ON THE INVESTIGATION OF SUMMABLE
SERIES *

Leonhard Euler

§19 If the sum of the series, in the terms of which the undetermined quantity
x is contained, was known, which will therefore be a function of x, then,
whichever value is attributed to x, one will always be able to assign the sum of
the series. Therefore, if instead of x one puts x + dx, the sum of the resulting
series will equal to the sum of the first together with the differential: hence,
it follows that the differential of the sum will be = to the differential of the
series. Because this way so the sum as the single terms will be multiplied by
dx, if everywhere one divides by dx, one will have a new series, whose sum
will be known. In similar manner, if this series is differentiated again and it
is divided by dx everywhere, a new series will arise together with its sum
and so from one summable series involving the undetermined quantity x by
means of continued differentiation innumerable new equally summable series
will be found.

§20 That these things are better understood, let the undetermined geometric
progression be propounded, whose sum is of course known,

1
ﬁ:1+x+x2+x3+x4+x5+x6+etc.

If now the derivative is taken, it will be
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1755”, reprinted in in ,Opera Omnia: Series 1, Volume 10, pp. 235 - 255 “, Enestrom-Number
E212, translated by: Alexander Aycock for the , Euler-Kreis Mainz”



d
(1_xx)2 = dx + 2xdx + 3x%dx + 4x3dx + 5x*dx + etc.

and having divided by dx one will have

1
(1P

If one differentiates again and divides by dx, it will arise

=14 2x 4 3x? + 4x3 + 5x* + etc.

2
(ESE =2+2-3x+3-4x* +4-5x° +5- 62" +etc,

or

1
——— = 143x 4 6x* + 10x° + 15x* + 21x° + etc.
(1—x)°
where the coefficients are the triangular numbers. If one differentiates further
and divides by 3dx, one will obtain
1 2 3 4

——— = 1 +4x + 10x° 4 20x” + 35x~ + etc.,

(1—x)*
whose coefficients are the first pyramidal numbers. And, by proceeding further
this way, the same series arise, which are known to arise from the expansion
of the fraction ﬁ
§21 This investigation will extend even further, if, before the differentiation
is done, the series itself together with the sum is multiplied by a certain power
of x or a function. So, because it is

1% T+x+x2+x° +x* +x° +etc.,
multiply by x™ everywhere and it will be

xm

] — XM + xm+1 + xm+2 + xm—|—3 4 xm+4 = etc.
— X

Now differentiate this series and having divided by dx it will be

mx™ 1 — (m —1)x™
=y

= mx™ 4 (m A1) x™ + (m42)x" T 4 (m 4 3) 2™ 4 ete.



Now divide by ™1 one will have

m—(m—-1x m X
(1—x)2 _1—x+(1—x)2

=m+ (m+1)x + (m+2)x% + etc.

Multiply this, before a new derivative is taken, by x" that it is

mx" P
Ty
Now, do the differentiation and having divided by dx it will be

> =mx" + (m+ 1)x" 4 (m +2)x" 2 + etc.

mnx"1 n (m+4+n+1)x" . 2x"H1
1—x (1—x)? (1—x)3

=mnx"' 4+ (m4+1)(n+1)x" + (m +2)(n +2)x" ! +etc.

But having divided by x"~! it will be

mn  (m+n+1)x 2xx
T—x (1—x)? +(1—x)3

mn + (m+1)(n+1)x + (m +2)(n +2)x* + etc.

and it will be possible to proceed further this way; but one will always find
the same series which arise from the expansions of the fractions constituting
the sum.

§22 Since the sum of the geometric progression assumed at first can be
assigned up to any certain term, this way also series consisting of finite a
number of terms will be summed. Because it is

1 — xnt1
T T+x+x2+2°+x4 4+ 2,
it will be having done the differentiation and having divided by dx

1 (n+1)x" — nx"+1
(1-x)?% (1—x)?

=14+2x+32+4x3 + - +nx" L.

Hence, the sum of the powers of natural numbers up to a certain term can be
found. For, multiply this series by x that it is



x — (n+1)x" 4 a2
(1-x)?
which differentiated again and divided by dx will give

= x 422 4+3x3+ - +nx",

T+x— (n+1)x" + (2nn +2n — 1)x" 1 — pnx*+2
(1—x)°

this multiplied by x will give

= 14+4x+9x2+- -+ n>x"L;

x+x2— (n+1)2x" + (2nn 4 2n — 1)x" 2 — nnx" 3
-y

which differentiated, divided by dx and multiplied by x will produce this
series

= x+4x>+ 93+ 022",

x + 8x% +27x3 + - - - + n2x",

whose sum therefore will be found. And from this in similar manner the
indefinite sum of the bisquares and higher powers will be found.

§23 Therefore, this method can be applied to all series containing an unde-
termined quantity whose sum is known, of course. Because except geometric
series all recurring series enjoy the same prerogatives that they can be summed
not only up to infinity but also to any given term, one will be able to also find
innumerable other summable series from these by the same method. Because
most extensive work would be necessary, if we wanted to follow up on this,
let us consider only one single case.

Let this series be propounded

_
1—x—xx
which differentiated and divided by dx will give

= x+ 2%+ 263+ 3x* +5x° 4+ 8x° + 13x” + etc.,

1
(1_;:_3‘;)2 — 14 2x + 622 + 12%° + 25x* + 48x5 + 9110 + etc.

But it easily becomes clear that all series resulting this way will also be
recurring whose sums can even be found from their nature itself.



§24 Therefore, in general, if the sum of a certain series contained in this form

ax + bx* + cx® 4 dx* + etc.
was known which sum we want to put = S, one will be able to find the sum
of the same series, if the single terms are each multiplied by terms of an
arithmetic progression. For, let
S = ax + bx? + cx® 4+ dx* + ex® + etc,;
multiply by x™; it will be

Sa™ = ax™ 4 b2 4 o™ 4 dx™H 1 ete;

differentiate this equation and divide by dx

as
mSx™ 1 4 o= (m ax™ + (m + 2)bx" ! + (m 4 3)cx"*? + etc,;

divide by x"~! and it will be

xds
dx
Therefore, if one desires the sum of this following series

mS + = (m+ 1)ax + (m +2)bx® + (m + 3)cx® + etc.

wax + (& + B)bx* 4 (a4 2B8)cx® + (a4 38)dx* + etc.,

multiply the superior by g and put mp + = a thatitis M = % and the
sum of this series will be

BxdS
dx

=(a—pB)S+

§25 One will also be able to find the sum of this propounded series, if its
single terms are each multiplied by terms of series of second order, whose
second differences are just constant, of course. For, because we already found

mS + Jijj = (m+1)ax + (m +2)bx* + (m + 3)cx® + etc.,

multiply by x" that it is



x”“dS
dx

differentiate having put dx constant and divide by dx

msx" + = (m+1)ax""" + (m +2)bx™*? + etc;

(m+n+1)x"S N x"*1dds
dx dx?
= (m+1)(n+1)ax" + (m+2)(n +2)bx" " + etc.

mnSx" 1 +

Divide by x"~! and multiply by k that it is

(m+n+1)kxdS N kx?ddD
dx dx?

= (m+1)(n + Dkax + (m +2)(n + 2)kbx* + (m + 3) (n + 3)kcx” + etc.

mnkS +

Now, compare this series to that one; it will be

Diff. I
k + 1k +1kn +1k =
" " " ‘ km +kn +3k =p
knm +2km +2kn +4k =a +1pB
km +kn +5k =8
Inm +3km +3kn +9% =a +2 +7

Therefore, k = %’y and m+n = % —3and

mn:g_m_n_lzzﬁ_%+2zw.

k

Hence, the sum of the series in question will be

(B—v)xdS  yx2ddS
(w=p+7)S+ dx T
§26 In similar manner, one will be able to find the sum of this series

Aa + Bbx + Ccx? 4+ Ddx® + Eex* + etc.,

if the sum S of this series was known of course

S =a+bx+cx® +dx® +dx® +ex* + fx° +etc.

+

Diff. I

2k

=7



and A, B, C, D etc. constitute a series which is led to constant differences. For,
since it its form is concluded from the preceding, assume this sum

BxdS N vx2ddS N AX3d®S N extd*s
dx 2dx? 6dx3 24dx4
Now, to find the letters «, B, v, 6 etc., expand the single series and it will be

aS + + etc.

aS = laa + labx + lacx® + ladx® + laex* + etc.
ds
'B;Cx + 1Bbx + 2Bcx? + 3Bdx> + 4fex* + etc.
24ds

727 = + 1yex® + 3ydx® 4 6yex? + etc.
Sx3d°
2735 = +18dx® + 48ex* + etc.
ex*d*s 4
W = + leex + etc.

etc,;

compare this collected together to the propounded one

Z = Aa + Bbx + Ccx? 4+ Ddx® + Eex* + etc.

and having done the comparison of the single terms

—B—A
—28—a=C—2B+A
—3y—38—a=D-3C+3B—A

etc.

S

> < ™ R
Il
T 0O % >

Having found these values the sought after sum will therefore be

(B— A)xdS N (C — 2B+ A)x?ddS N (D —3C+3B— A)x*d>S
1dx 1-2dx? 1-2-3dx3

or if the differences of the series A, B, C, D, E etc. are indicated in the usual

manner, it will be

Z=AS+

+etc.,



4 AA - xdS . A?A - x2d2S n A3A - x3d3S
ldx 1-2dx2 1-2-3dx8
if it was, as we assumed,

Z =AS + etc.

S =a+bx+cx® +dx®+ext + fx° +etc.

If therefore the series A, B, C, D etc. finally has constant differences, one will
be able to express the sum of the series Z in finite terms.

§27 Since having taken e for the number whose hyperbolic logarithm is = 1
itis
x? x3 x* x>

X
o142 ;
¢ ittt 23 123212345 &

assume this series for the first, and because it is S = ¢*, it will be fl—i = ¢,
% = e* etc. Therefore, the sum of this series which is composed from that
one and this one A, B, C, D etc.

A+§+Cx2+ Dx3 N Ex* et
1 "12"12371.2.3.4 %€

will be expressed this way

o (A xAA N xxA2A N x3A3A N x*AA + ete
1 1-2 1-2.3 1-2-3-4 Ve
So, if this series is propounded
5x  10x? | 17x? 26x* 37x°
24— + + + etc.,

1 1-2 1-2-3+1-2-3-4 1-2-3-4-5
because of the series

A, B, C, D, E etc

A = 2, 5, 10, 17, 26 etc.
AA = 3, 5, 7, 9 etc.
AAA = 2, 2, 2 etc.



the sum of this series

24+ 5x+ + + + etc.

will be

=e"(2+3x+xx) =e"(1+x)(2+x),

which is immediately clear. For, it is

2¢* —2—i-2—x—i-2—x2 +27X3 +Z—X4 + et
—cTT T 6 24 ¢
3x2 3x2 3x*
X S - - -
3xe = +3x + 1 + > + 6 + etc.
3 A
xxe® = +xx +— + = +Hetc
1 2
and in total
1 17x3  24x*
e*(1+3x+xx) =2+5x + 0xx+ T2 et

2 6 24

§28 The things treated up to now not only concern series running to an
infinite number of terms, but also sums of a finite number of terms; for, the
coefficients a, b, c, d etc. can either proceed to infinity or can be truncated whe-
reever one desires. But because this does not demand any further explanation,
let us consider in more detail what follows from the things mentioned up to
now. Therefore, having propounded any arbitrary series, whose single terms
shall consist of two factors, the one of which shall constitute a series leading
to constant differences, one will be able to assign the sum of this series, as
long as having omitted these factors the sum was summable. Of course, if this
series is propounded

7 = Aa + Bbx + Ccx? + Ddx® + Eex* + etc.

in which the quantities A, B, C, D, E etc. constitute a series of such a kind
which is finally led to constant differences, then one will be able to exhibit the
sum of this series, as long as one has the sum S of this series



S = a+bx+cx?+dx® + ex* + etc.

For, having taken the continued differences from the progression A, B, C, D,
E etc., as we showed at the beginning of this book,

A, B, C, D, E, F, etc.
AA  AB, AC, AD, AE  etc.
A’A  A’B,  A°C, A’D  etc.

A°A etc.

etc.

the sum of the propounded series will be

2
diAA+ x-ddS

313
Z=SA+2 AA L FES A e

1d 1-2dx? 1-2-3dx3
after having put dx constant in the higher powers of S.

§29 If therefore the series A, B, C, D etc. never leads to constant differences,
the sum of the series Z will be expressed by means of a new infinite series
which will converge more than the propounded one, and so this series will
be transformed into another equal one. To illustrate this let this series be

propounded
2 3 A 5 6
s LYYy
Y=y+5 +5 ot by tete,
which is known to express In ﬁ such that itis Y = —In(1 — y). Divide the
series by y and put y = x and Y = yZ that it is

Z = —;ln(l —y) = —%ln(l —x);

it will be

10



VS B S ST SR
2 3 4 5 6 N

which compared to this one

1
S:1—i—x—|—x2+x3+x4+x5—|—x6+etc.:m

will give these values for the series A, B, C, D, E etc.

1 1 1 1 1 ‘
7 2/ 3/ 4/ 5 e C'

1 1 1

1o 2.3 - — etc.

-4’ 4-5

W

etc.

Therefore, it will be

1
A=1 AA=—-, ANA=_
4 2/ 3’
Further, because itis S = —11 -, it will be

s 1 dds 1 @£s 1 otc
dx  (1—-x)2" 1-2dx2  (1—-x)3" 1-2-3dx3 (1—x)* '

Having substituted these values this sum will arise

1 X x2 X3 x*
- + — etc.

2=y ai—x2 "3—xp 4d—x7 BI—xp

Therefore, because itis x =y and Y = —In(1 — y) = yZ, it will be

2 3 4

—In(l1-y) = LA | + p—/ 1 Tetc,

1oy 21—y 31—y 4(1-y)

which series manifestly expresses In <1 + %) = In ﬁ = —In(1 —y), the
validity of which is even clear by means of the things demonstrated before.

11



§30 Now let this series be propounded that the use becomes also clear, if
only odd powers occur and the signs alternate,

7 9 11
y_ vy .y _ v
5 7—1—9 11 + etc.,

from which it is known that it is Y = arctany.

3 5
Y:y—‘%—k

Divide this series by y and put % = Z and yy = x; it will be

xx x> xt 5
— — =4+ = — — +tetc

X
Z_1_*+5 7 "9 11

3
If it is compared to this one

S=1—x+xx—x>+x*— 2% +etc,

it will be S = —- and the series of coefficients A, B, C, D etc. will become

etc.

etc.

T+x
1 1 1
Lo 2 ¥ 2 ¥ 2 "
e = 2-4 3 2-4 57 2.4 :
MA = 3.5 .y 357 .y 5.7.9
NA = 357 e “3.5.7.9 ete.
A*A = 3:5:7:9 etc.
etc.
But because itis S = H%' it will be
ds 1 dds 1 d®s 1
Tx  (A+x2 1242 (+x7 12303  (txf &
Hence, having substituted these values, the form will become
7 _ 1 + 2x + 2 - 4x? + 2-4-6x° + ete.
1+x 3(1+x)2 3-5(1+x)3 3-5-7(1+x)*

having resubstituted x = yy and multiplied by vy it will become

12



U 213 2-4y° N 2-4-6y7
14+yy 31 +yy)? 3-5(1+yy)® 3-5-7(1+yy)

Y = arctany = 1 Tetc

§31 One can also transform the superior series by means of which the arc of
a circle is expressed another way by comparing it to the logarithmic series.

For, let us consider the series

3 4 P

z=1-2+2_2 4% T Lok
B 35 7 9 1 7
which we want to compare to this one
1 x xx 20 xt 1 1
=-——Z-+———+ - —etc. = - —-In(1
=0 271 6 s feTg 0T

and the values of the letters A, B, C, D etc. will be

- 3 5 7’ 9 '
2 12 12 12
AA = < il il il .
3’ 3.5 5.7 7.9 ete
2.4 2.4 2.4
A2A = = - .
3.5’ 3.5.7 5.7.9 etc
2.4.6
ASA = .
3.5.7 etc
etc

Further, because itis S = § —  In(1 + x), it will be

a1 ads 1
ldx — 2(1+x)" 1-2dx2  4(1+x)?’
d*S 1 d*s 1

= — ; = t
1-2-3dx  6(1+x)3 1-2-3-4dx* 8(1+x3

Therefore, it will be SA = D% = 1 and from the remaining it will be

X B 2xx B 2-4x3
31+x) 3-5(1+x)?2 3-5-7(1+4x)3

Z=1- — etc.

13



Now, let us put x = yy and multiply by y; it will be

]/3 2]/2 2. 4]/7

A+yy) 350+yw? 3.5 70+yp

Y = arctany =y — 3

This transformation will therefore not be impeded by the infinite term § which
went into the series S. But if there remains any doubt, just expand the single
terms except the first into power series in y and one will discover the indeed
the series first propounded arises.

§32 Up to now we considered only series of such a kind in which all powers
of the variable occured. Now, we want therefore proceed to other series which
in the single terms contain the same power of the variable of which kind this
series is

1 1 1 1
5= itx bix crx drx S

For, if the sum S of this series was known and is expressed by a certain
function of x, by differentiating and by dividing by —dx it will be

5_ 1 oo e

dx  (a+x)?2 (b+x)? (c+x)?2  (d+x)2 ’
If this series is further differentiated and divided by —2dx, one will recognize
the series of the cubes

dds 1 n 1 n 1 n 1
2dx2 (a+x)? " (b+x)3  (c+x)?  (d+x)
and this differentiated again and divided by —3dx will give

3 + etc.

-d*s 1 n 1 n 1 n 1

dx3  (a+x)* (b+x)*  (c+x)*  (d+x)
And in similar way, the sum of all following powers will be found, as long as
the sum of the first series was known.

n + etc.

§33 But we found series of fractions of this kind involving an undetermined
quantity above in the Introductio, where we showed, if the half-circumference
circle, whose radius is = 1, is set = 7, that it will be

14



T 1 1 1 1

1
— = - - — etc.
nsin%rf m+n—m n—+m 2n—m+2n—i—m+3n—m ete
T cos BT _l_ 1 1 B 1 n 1 _ 1 4 ete
nsinm  m n—m n+m 2n—m 2n+m 3n—m ’

Because it is therefore possible to assume any arbitrary numbers for m and #,
let us set n = 1 and m = x that we obtain a series similar to that one we had
propounded in the preceding paragraph; having done this it will be

s 1 1 1 1 1
sinnx:§+1—x_1+x_2—x 2+x+3—x_etc'
7T COS 7T 1 1 1 1 1 1
sin 7Tx :E_1—x+1+x_2—x+2+x_3—x+etc

Therefore, one will be able to exhibit the sums of any powers of fractions
arising from these fractions by means of differentiations.

§34 Let us consider the first series and for the sake of brevity put " =S,
whose higher differentials shall be taken having put dx constant, and it will

be

120d3x

_|_

_|_

1 1 1 1 n 1 et
1—x 14+ x 2 —x 2+ x 3—x ete.
1 1 1 1 1
- - — etc.
A—x2 (422 =22 B+x2 B-xz
1 1 1 1 1
=27 (+x° Q=27 " B+x@  (G-xp €
(N S SRR SRR SRR
A—xf (122 =2 " Brof BoxE ¢
1 1 1 1 1
I—xp (I+xp (=25 G+xp B=xp ©©
! - ! =+ ! + ! - ! — etc.
(1—-x) (1+x)° (2—x)° B+x)° (3—x)°

etc.

15



where it is to be noted that in the even powers the signs follow the same law
and in similar way in the odd the same law of the signs is observed. Therefore,

the sums of all these series are found from the differentials of the expression
S —

sm 7TX "
§35 To express this differentials in a simpler way let us put

sint =p and cosw=g;

it will be

dp = mdxcosmx = mqdx and dq = —mpdx.

Because therefore itis S = %, it will be

—dS g

dx — pp

dds (pp+2qq) 713(qq+1) .

2 3 because itis pp+qq =1
—d3S ™ (4% + 59)

dx3 p*

a's _ 5 24q 28q _ (g +187° +5)

dxt p° Ty p°

—d°S _ 6 120q5 180q AN 7% (g° + 58¢° + 619)
dx5 P6 4 pp }96

d°s . 720q 1320q 6629> 61 77 (g% +179g* + 4794% + 61)
F Tt )= 7

dx® p p p
—d’s 5040 10920 7266q° 1385

s :ﬂ8< q q+ P4q+ p2q>
or

8
= Zs(tf + 543¢° + 31114° + 1385¢)

s 9 <40320q8 . 1008004° . 836644 N 245684> 1385)
dx8 p° p’ p° p? p

16



or

9
= 7];9(178 + 16364° + 182704* + 190284* + 1385)

etc.

These expressions are easily continued as far as one desires; for, if it was

LA ( g’ pg? gt

qnfé
FIe + p”*5 +etc.) ,

pn+1 pn—l pn73

then its differential having changed the signs will be

qn+1 qnfl qnf
Jn+lg (n+ 1)txpn+2 + (na+ (n —1)B) o +((n—=2)B+(n—3)7) T
dxi’l—l—l n—>5
4 ((n—4)7 + (n—5)5) ZH T ete.

§36 Therefore, from these ones will obtain the following sums of the superior
series exhibited in § 34

st
p
—ds_m q
dx 1 p?
das (2P 1
24dx2 2 \(p® " p
s _ (6 5
6dx3 6 \ p* p?
d*s ™ (24 284> 5
= (e TS
24dx* 24 \ p° P op
—d°S 7% (1204° 1804° 6lg
—_—= + +—=
120dx> 120 \ p® p* p?
d°s 7 (720¢° 13204* 6629> 61
—— = + + +—
720dx6 720 \ p’ p° & p

17



—d’s  n8 (5040q7 109204° | 72667° 1385q>

720dx® 5040 \ p® pe p* p?
$S 7 (403204  100800q°  83664q¢  245684° 1385
40320dx5 40320 \ p° o7 75 P p
etc.

§37 Let us treat the other series found above [§ 33] in similar way

mcostx 1 1 1 1 1 1
sin 7Tx :E_1—x+1—|—x_2—x+2—|—x_3—x+etc'
and for the sake of brevity having put 72237 = T the following summations
will arise
T = 1 ! + ! - ! =+ 1 — etc.
X 1—x 1+x 2—x 2+x
—dT 1 1 1 1 1
x 2 T A—x2 T Oxx2  2—x2  Qrxp
ddT 1 1 1 1 1
2w T3 (A—xp U+xP 2—xP 2gxz &©
—d°T 1 1 1 1 1
A R (A LRV PR T
d*T 1 1 1 1 1
it B (U—xp 0125 @2-xp T 2rap o€
-7 1 1 1 1 1
208x  ®  (A=xf  (Axxf  2=xF  xxs
etc,,

where in the even powers all terms are positive, but in the odd the signs +
and — alternate.

§38 To find the values of these differentials let us as before put

sintx = p and dg = —mpdx

that it is pp + qq = 1; it will be

dp = mqdx and dg = —mpdx.

18



Having added these values it will be

T=rr- Z
_ 2
dT — 2 (qq 11) = 7T
dx pp pp
ddT 20 2 273
Freiat <q3 + q> =25
x p p p
—d°T 4 (64"  8qq o af6qq 2
dxs—"<p4+ +>—”<p4 pp)
d*T s (244 16q
ot =" ( P w)
—d5T o (1204* 120q9 16
e < P +PP>
T, <720q5 9604° 272q>
=7 + +
dx6 P7 PS P3
—d’T 4 (50404° 84004* 369642 272
i I Z 7
x p p q p
ST 4 (4032097 806404° = 48384¢° 79364
e gt 7 Tt T3
x p p p p
etc.

These formulas can easily be continued as far as one desires. For, if it is

idnT _ n,n—i-l <[an1 [Bqn73 ,),qnfS
dxn

qn77
pn-i-l + pn—l + pn—3 + pn—5 +etc.>,
the expression will be the following

AT e ((n +Dag" | (n=1)(a+p)g"*

dxn-i-l pn+2 pn pn—Z
For, if it is

n n—1 n—3 n—>5
iixz =" (wpan + [qun—l + ,;9[171—3 p

the following expression will be
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dn+1T 1 n -1 n—2 -3 n—4
e e N

§39 Therefore, the series of powers given in § 37 will have the following
sums having put sin 7x = p and cos mx = g

T=r- Z
I =
ddT 3 g
2dx? = 3
—d®T 4 (9 1
i = (7 5)
—d*T (7 2g
2t =" (5 + 3)
p p
—d°T o (T 349 2
120dx5 " <;76 ToE 15pp>
ﬂ — 7-[7 f + 47q3 + ﬂ
720dx® p”  3p>  45p3
T (g 5t 1 17
5040dx7 p8  3ps  15p*  315pp
asT _ 9 ql 67115 N 64° 62q
40320dx8 p?  3p7  5p°  315p3
etc.

§40 Except these series we found several others in the Introductio from whom
which in similar manner by differentiations others can be extracted.

For, we showed that it is

1 oavx 1 1,1 1 1
2x 2xtanmy/x 1—-x 4-x 9-x 16—x 25—x ’

Let us put that the sum of this series is = S that it is
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1w cosmyx,
S 2x 2y/x sinmy/x’

it will be

ds 1 T CoSTTy/X s

ax 2xx T 4x/x sinmy/x | 4x(sinmy/x)2’

which expression therefore yields the sum of this series

1 1 1 1 1

tc.
A—x2  G—x2 " (9—x2  6—x2 " @5_xp T°C
Further, we also showed that it is
o™V 4l 1 1 PR SR S S
2x e2i_1 2x l1+4+x 4+x 9+x 16+«x '
If therefore this sum is put = S, it will be
s_ 1 1o e
dx  (14+x)2  (4+x)?2 (9+x)?2 (16 +x)2 ’
Butitis
s  —m VY41 an 2V 1

dx Ik @nEi—1 x (@wE_1)p @ 2ax

Therefore, the sum of this series will be

—ds V41 L e2mVx 1
dx  4xy/x e2TVr —1 x o (e2wx —1)2 2xx’

And in similar ways by means of further differentiations the sums of the
following powers will be found.

§41 If the value of a certain product composed of factors involving the
undetermined letter x was known, one will be able to find innumerable
summable series from it by means of the same method. For, let the value of
this product

(14 ax)(1+ Bx) (14 yx)(1+x)(1 + ex)etc.
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be = S, a function of x, of course; by taking logarithms it will be
InS =1In(1+ ax) +In(1+ Bx) + In(1 + yx) + In(1 + dx) + etc.
Now, take the differentials; after division by dx it will be

s x P 0 L
Sdx  1+ax 1+Bx 1+9x 1+6x 7

from the further differentiation of which the sums of any powers of these frac-
tions will be found, precisely as we explained in more detail in the preceding
examples.

§42 But, in the Introductio we exhibited several expressions of such a kind,
to which we want to apply this method. If 77 is the arc of 180° of the circle
whose radius is = 1, we showed that it is

mrt mmr 4nn —mm lénn —mm 26nn — mm

Moy T 4dnn 16nn 36nn ete.
cos mm  nn—mm O9nn —mm 25nun —mm 49nn — mm ot
2n nn Inn 25nn 49nn '

Let us put n =1 and m = 2x that it is

1—xx 4—xx 9—xx 16— xx

SIN7TX = 7TX - 1 1 9 16 etc.
or
sin 7T — v 1-x 1+x 2—x 2+x 3—x 3+x 4—x ot
- 1 1 2 2 3 3 4 '
and
cos7rx—1_4xx 9 —4xx 25 —4xx 49 —4xx ot
o 1 9 25 49 '
or
1—2x 1+2x 3—2x 3+2x 5—2x 54+ 2x
COSTTX = . . . . . .etc_

1 1 3 3 5 5
Therefore, from these expressions, if one takes logarithms, it will be
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1-— 1 2 — 2 —
Insinztx = Inmtx + In 1x—|—ln —;x—l—ln 2x—|—ln —;x+ln33x—|—etc.
1-2 142 -2 2 -2
Incostx = In 7 x—l—ln +1 x—|—1n3 3 x+ln3—g x—l—lnSTx—i—etc.

§43 Now, let us take the differentials of these series of logarithms and having
divided by dx everywhere the first series will give

meosntx 11 11 1
sinmx x 1-x 1+x 2—-x 2+x 3—x
which is the series itself we treated in § 37. The other series on the other hand

will give

—+ etc.

—msinftx 2 n 22 n 2 + et
cosmx  1—-2x 1+42x 3—2x 3+2x 5-2x '
Let us put 2x = z that it is x = 5 and divide by —2; it will be
msin 1tz 1 1 1 1 1
= + + — etc.

2(:05%7'[2_1—2_1-1-2 3—2_3+Z 5—z

But because it is

sinlnz— 71_“)57[2 and coslnz— 71+COS7TZ
277 2 2T 2 ’

it will be

ny1l—cosmz 2 B 2 2 2
/1 + cos 7tz 11—z 14z 3—z 5—z2

or by writing x instead of z it will be

n\/l—cosnx_ 2 B 2 + 2 B 2 n 2 ete
v/1+ cos tx " 1—-x 1+x 3—x 3+x 5—x )

Add this series to the one found first

ncosnx_l_ 1 n 1 _ 1 n 1 B 1 + et
sinmx x 1—-x 1+4+x 2—x 24x 3—x ’

and one will find the sum of this series
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1+1 1 1+1+1 1etC
x 1—-x 14+4x 2—x 24+x 3—x 3+x ’

tobe=12 \/V 11+chss ;rx + ZLOSTX Byt this fraction \/jvhcos” if the numerator and

denominator are multiplied by +/ 1 — cos 7Tx, goes over into 1=S7X Therefore,
the sum of the series will be = —, which is the series itself we had in § 34;
hence, we will not prosecute this any further.
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